Abstract

We investigate effects of thermal and quantum fluctuations on the phase diagram of a spin-1 87Rb Bose-Einstein condensate (BEC) under a quadratic Zeeman effect. Due to the large ratio of spinindependent to spin-dependent interactions of 87Rb atoms, the effect of noncondensed atoms on the condensate is much more significant than that in scalar BECs. We find that the condensate and spontaneous magnetization emerge at different temperatures when the ground state is in the brokenaxisymmetry phase. In this phase, a magnetized condensate induces spin coherence of noncondensed atoms in different magnetic sublevels, resulting in temperature-dependent magnetization of the noncondensate. We also examine the effect of quantum fluctuations on the order parameter at absolute zero, and find that the ground-state phase diagram is significantly altered by quantum depletion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call