Abstract
The organochlorine pesticide dichloro-diphenyl-trichloroethane (DDT) is persistent in the environment and leads to adverse human health effects. High levels in breast milk pose a threat to both breast tissue and nursing infants. The objectives of this study were to investigate DDT-induced transcriptomic alterations in enzymes and transporters involved in xenobiotic metabolism, immune responses, oxidative stress markers, and cell growth in a human breast cancer cell line. MCF-7 cells were exposed to both environmentally-relevant and previously-tested concentrations of p,p’-DDT in a short-term experiment. Significant up-regulation of metabolizing enzymes and transporters (ACHE, GSTO1, NQO1 and ABCC2) and oxidative stress markers (CXCL8, HMOX-1, NFE2L2 and TNF) was clearly observed. Conversely, UGT1A6, AHR and cell growth genes (FGF2 and VEGFA) were severely down-regulated. Identification of these genes helps to identify mechanisms of p,p’-DDT action within cells and may be considered as useful biomarkers for exposure to DDT contamination.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have