Abstract

Filament winding is an advanced technology for fabrication of high-performance composites. Pressure-free fabrication can be achieved for non-planar composites with complicated shapes using resin-immersed twisting fibers. In this study, twisted bamboo fiber (TBF) composites were prepared by a filament winding processing (FWP). Short bamboo fiber (SBF), long bamboo fiber (LBF), and TBF composites were prepared by hot pressing (HP) and resin transfer molding (RTM). The results showed that the bamboo fiber/epoxy resin composites were positively related to the fiber size. The bamboo fiber/epoxy resin composites fabricated by FWP exhibited optimal shear performance, while those generated by RTM exhibited optimized bending performance. Dynamic thermomechanical analysis revealed that composites made by FWP had optimized interfaces. The FWP mechanism of bamboo fiber composites was resin immersion and alignment of TBF; upon resin immersion the TBF were coated by resin and could not enter the internal tubes or parenchyma tissues of the TBF. The TBF was aligned by winding equipment. After heated solidification of the resin, several bubble pores were distributed on both sides of the TBF, whose positions remained static over time. The filament winding processing for bamboo fiber composites enhanced their performance and could lead to the applications in bamboo fibers composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call