Abstract
BackgroundCannabinoid CB1 receptors play an essential role in drug addiction. Given the side effect profiles of orthosteric CB1 antagonism, new strategies have been attempted to modulate this target, such as CB1 receptor allosteric modulation. However, the effect of CB1 allosteric modulation in drug addiction is unknown. The present study examined the effects of the CB1 receptor allosteric modulator ORG27569 on the reinstatement of cocaine- and methamphetamine-seeking behavior in rats. MethodsRats were trained to self-administer 0.75mg/kg cocaine or 0.05mg/kg methamphetamine in 2-h daily sessions for 14 days which was followed by 7 days of extinction sessions in which rats responded on the levers with no programmed consequences. On reinstatement test sessions, rats were administered ORG27569 (1.0, 3.2, 5.6mg/kg, i.p.) or SR141716A (3.2mg/kg, i.p.) 10min prior to re-exposure to cocaine- or methamphetamine-paired cues or a priming injection of cocaine (10mg/kg, i.p.) or methamphetamine (1mg/kg, i.p.). ResultsBoth cues and a priming injection of cocaine or methamphetamine significantly reinstated the extinguished active lever responding. Pretreatment with ORG27569 resulted in a dose-related attenuation of both cue- and drug-induced reinstatement of cocaine- and methamphetamine-seeking behavior. SR141716A also exhibited similar inhibitory action on reinstatement of drug-seeking behavior. ConclusionNegative allosteric modulation of CB1 receptors can produce similar functional antagonism as orthosteric CB1 receptor antagonists on reinstatement of drug-seeking behavior. Thus, ORG27569 or other negative allosteric modulators deserve further study as potentially effective pharmacotherapy for drug addiction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.