Abstract

The C4'-oxidized abasic site (C4-AP) is produced in DNA as a result of oxidative stress by a variety of agents. For instance, the lesion accounts for approximately 40% of the DNA damage produced by the antitumor antibiotic bleomycin. The effect of C4-AP on DNA replication in Escherichia coli was determined using the restriction endonuclease and postlabeling (REAP) method. Three-nucleotide deletion products are the sole products observed following replication of plasmids containing C4-AP under SOS conditions in wild-type cells. Full-length products are formed in varying amounts depending upon the local sequence in wild-type cells under non-SOS-induced conditions. The "A-rule" is followed for the formation of substitution products. C4-AP is the first example of a DNA lesion that produces significant levels of three-nucleotide deletions in a variety of sequence contexts. Experiments carried out in cells lacking specific polymerases reveal that formation of three-nucleotide deletion products results from a coordinated effort involving pol II and pol IV. This is the first example in which these SOS inducible polymerases are shown to work in concert during lesion bypass. Three-nucleotide deletions are not observed during the replication of other abasic lesions, and are rarely produced by bulky adducts. The effect of C4-AP on DNA replication suggests a significant role for this lesion in the cytotoxicity of bleomycin. Formation of the C4-AP lesion may also be responsible for the formation of mutant proteins containing single-amino acid deletions that exhibit altered phenotypes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.