Abstract
ABSTRACTIn this study, the effects of the ammonium loading rate (ALR) and inorganic carbon loading rate (ILR) on the nitrification performance and composition of a nitrifying bacterial community were investigated in a moving bed biofilm reactor, using poly(vinyl alcohol) (PVA) sponge cubes as a supporting carrier. Between the two ALRs of 0.36 and 2.16 kg-N m−1 d−1, stable partial nitritation was achieved at the higher ALR. Inorganic carbon was dosed at high levels: 33.1, 22.0, 16.4, 11.0, and 5.4 times the theoretical amount. Nonetheless, nitrification efficiency was not affected by the ILR at the two ALRs. Quantitative PCR analysis of ammonia- and nitrite-oxidizing bacteria revealed that ALR is an important determinant of partial nitritation by accumulating ammonia-oxidizing bacteria in the nitrification system. In comparison, two nitrite-oxidizing bacterial genera (Nitrobacter and Nitrospira) showed almost the same relative abundance at various ALRs and ILRs. Terminal restriction fragment length polymorphism targeting the gene of ammonia monooxygenase subunit A revealed that Nitrosomonas europaea dominated under all conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have