Abstract
Thalidomide (TM) induces limb defects in humans and some animal species including rabbits. Although the mechanism of TM-induced limb defects has been investigated for a long period, the limb development-related genes expressions have not been vigorously characterized in rabbits. In this study, we investigated the Fgf8, Bmp4 and Hoxa11 expressions in TM-treated JW rabbit embryos on gestation days (GDs) 10, 11 and 12 by whole mount in situ hybridization. On GDs 10 and 11, growth retardation of the embryo was induced by TM treatment. The Fgf8 expression lengths on GDs 10 and 11 in the forelimb bud were significantly or tended to be decreased in the TM-treated embryos, which was correlated to the growth retardation and was not considered to be directly relevant to the teratogenic effect of TM in the forelimb. The TM-induced characteristic changes in the expression pattern of Hoxa11 and Bmp4 on GDs 10 and/or 11 were not noted. On GD 12, TM-induced growth retardation was not noted and the Fgf8 and Bmp4 expressions were not changed. On the contrary, Hoxa11 expression was narrowed at the anterior region, which was located on the radial side, and was not changed at the middle and posterior regions in the forelimb bud and in all regions in the hindlimb bud. Because the radius malformations were induced by TM treatment, we concluded the decrease in the Hoxa11 expression was related to the TM-induced limb defects and can be a good marker for early prediction of the teratogenic effect of TM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.