Abstract

Abstract Thermal stability and characterizations of silicon to silicon wafer bonding at low temperature using B-staged polymer, bisbenzocyclobutene (BCB), were investigated. Bare silicon to bare silicon wafer (briefly, bare to bare) and patterned silicon by chemical etching to bare silicon wafer (pattern to bare) bonding with 4 in. size were achieved by heating BCB coated wafer pairs at 230 °C. In case of bare to bare bonding, interfaces of bonded wafers were mechanically stable and strong enough to withstand a tensile force of at least 190 kg/cm2 at room temperature. Bond strength was drastically decreased over 300 °C because of decomposition of polymer. In case of pattern to bare, interfaces of bonded wafers were dense and good enough to withstand a tensile force of at least 60 kg/cm2 at room temperature. Silicon to silicon wafer bonding using BCB was suitable for fabricating and packaging of microstructures for micro-electro-mechanical system (MEMS) devices at low temperatures (

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.