Abstract
Fiber reinforced polymer composites are commonly bonded to concrete structures for strengthening reasons, even though little is known about the evolution of bond strength while the strengthening systems are subject to sustained loads and elevated temperatures. This investigation uses single-lap shear specimens to examine the effects of sustained load and elevated temperature on the time-dependent deformation of a carbon fiber reinforced polymer (CFRP) composite bonded to concrete as well as the pull-off strength of the composite after the sustained loading period. Increased temperature during the sustained loading period led to increased slip of the CFRP, whereas increased curing time of the polymer resin prior to the sustained loading period led to reduced slip. Specimens that underwent sustained loading had increased pull-off strength and interfacial fracture energy following the sustained loading period. This beneficial effect was most significant for roughly 30days of sustained loading. The analysis of strain distributions and fracture surfaces indicated that stress relaxation of the adhesive occurred in the 30mm closest to the loaded end of the CFRP during sustained loading, which increased the pull-off strength provided the failure locus remained mostly in the concrete. For longer sustained loading times, the bond failure locus shifted to the epoxy/concrete interface, which diminished part of the strength increase brought on by the stress relaxation of the adhesive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.