Abstract

The present investigation intends to study the influence of crosshead velocity and in-situ environmental conditioning i.e. high temperature and cryogenic temperature on micromechanical performance of glass fibre/epoxy, carbon fibre/epoxy and Kevlar fibre/epoxy polymer composites. 3-point short beam shear tests were conducted on the conditioned specimens to evaluate the interfacial properties and failure modes which are related to mechanical properties of the composites. The effect of crosshead velocity (within the range 1-103mm/min) on the interlaminar shear strength (ILSS) of all the three composite systems at different temperatures was studied. The glass transition temperature (Tg) of conditioned samples were measured by differential scanning calorimetry (DSC) in the temperature range of 25°C to 150°C temperature. At 1mm/min loading rate, for both glass/epoxy and carbon/epoxy composites maximum increase in ILSS value was about 85.72% with respect to ambient, while for Kevlar/epoxy composite 31.77% reduction in ILSS was observed at -100°C temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call