Abstract

Glass fibre reinforced epoxy (GRE) composite meet several degrading agents like moisture and temperature while its use in real time applications in civil infrastructures. Keeping this in mind, the short beam shear (SBS) specimens of GRE composite were exposed to such laboratory created stringent environment as a combination of moisture and elevated temperature for several periods. The environments are as: immersion in distilled water coupled with 65oC as hydrothermal conditioning and an ambience containing 95% relative humidity at 60oC as hygrothermal conditioning. Moisture treated SBS specimens were subjected to 3-point bend test to reveal inter laminar shear strength (ILSS), stress/strain at rupture and modulus values with periods of exposures. The concerned sample suffered 23% of degradation in ILSS values after 120 days of hydrothermal immersion and 25% after 90 days of hygrothermal conditioning. Samples at some optimum exposing conditions of both the exposures are thermally characterized by adopting differential scanning calorimetry (DSC) test. Glass transition temperature (Tg) of such representing samples were determined from the DSC thermograms. About 8 % reduction in Tg values was observed for the GRE composite sample, expectedly, due to moisture induced matrix plasticization and swelling. The fractographs as obtained through scanning electron microscope (SEM) revealed some causes of failures indicating the prime modes of failure of the treated GRE samples with optimum duration of both the exposures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.