Abstract

The effects of systemic hypoxia with different levels of CO2 on R-R interval (RRI) and systolic blood pressure (SBP) variabilities were investigated in conscious rats. Wistar rats chronically instrumented for the measurement of blood pressure, electrocardiogram, and renal sympathetic nerve activity (RSNA) were exposed to hypocapnic (Hypo), isocapnic (Iso), and hypercapnic (Hyper) hypoxia. On another day, the rats were treated with atropine and exposed to the same type of hypoxia. Sinoaortic denervation (SAD)-treated rats were exposed to Iso and Hyper, and RRI and SBP variabilities before and during hypoxia were analyzed using the maximum-entropy method with high resolution. With regard to RRI variability, very low frequency (VLF), low frequency (LF), and high frequency (HF) powers all decreased during Hypo, increased during Hyper, and did not change during Iso in intact rats. Changes during Hypo were attenuated by atropine, and those during Hyper were abolished by either atropine or SAD. The ratio of LF power to HF power decreased independently of increases in RSNA during each type of hypoxia. On the other hand, there were no changes in VLF, LF, or HF power in SBP variability during each type of hypoxia in intact rats. In atropine-treated rats, LF power increased during Iso and Hyper and HF power increased during each type of hypoxia. There was no difference in respiratory frequency among the three kinds of hypoxia in both intact and atropine-treated rats. The results suggest that arterial PCO2 level rather than respiration frequency produces changes in powers of RRI variability through changes in parasympathetic nerve activity and that with regard to SBP variability, parasympathetic nerve activity masks changes in LF power that reflect an increase in RSNA and those in HF power that reflect a mechanical consequence of respiration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call