Abstract

Using a tunable electroless nanoplating reaction, different silver structures including two nanoplate-based structures were synthesized, characterized and tested as catalysts to improve the electrochemical reduction of CO2 towards CO. Relative to a planar polycrystalline silver surface, the faradaic efficiency to CO was significantly improved, from 7% to 67% at −0.6 V vs RHE and from 51% to 97% at −1.0 V vs RHE, decreasing the parasitic evolution of hydrogen and formate. By comparing the catalytic performance of three intensively characterized silver structure types, namely high aspect ratio nanoplates, particulate nanoplate clusters, and interconnected grain-like particles, in-depth insights into various effects that influence the observed reactions are presented. In particular, at low potentials and high current densities, the catalytic performance is more related to the electrochemical surface area and local transport effects. The obtained results demonstrate the relevance of structural control in electrocatalysts and the special effects of nanoplate structures. Thus, our findings provide a useful groundwork for the practical design of electrocatalysts for CO2 reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.