Abstract

Biodegradable composites based on poly(butylene succinate) (PBS) and unidirectional plain jute fabrics have been developed. These composites were fabricated by compression molding of sandwiching 4–7 jute fabric layers between five and eight layers of PBS sheets. Surface modification of the jute fabric by alkali and combined alkali-silane treatments was investigated. The effects of surface modification on the mechanical and thermal properties of jute fabric/PBS biodegradable composites were studied. The mechanical properties of surface-treated jute fabric/PBS biodegradable composites were significantly higher than those of untreated ones. Compared with the alkali treatment, the combined alkali-silane treatment showed higher mechanical properties of the jute fabric/PBS biodegradable composites. The alkali-silane-treated jute fabric/PBS biodegradable laminated composite with six reinforced fabric layers (47.5 wt.%) achieved the best mechanical properties in this study, which showed an increase in tensile strength by 16.4%, tensile modulus by 10.8%, flexural strength by 24.2%, and flexural modulus by 21.9% compared with those of untreated one. Fractured surface morphologies of tensile specimens exhibited an improvement of interfacial fiber-matrix adhesion in the PBS biodegradable composites reinforced with surface-treated jute fabric. Thermal stability of the jute fabric/PBS biodegradable composites was remarkably to be intermediate between the PBS resin and the jute fabric. Surface-treated jute fabric/PBS biodegradable composites having good interfacial fiber-matrix adhesion resulted in stable composites with better thermal stability than that of untreated ones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call