Abstract

We report on effect of surface morphology on the optical and electrical properties of chemical bath deposited Zinc oxide (ZnO) nanostructures. ZnO nanostructures were deposited on the seeded conducting indium doped tin oxide substrate positioned in three different directions in the growth solution. Field emission scanning electron microscopy was used to evaluate the morphological properties of the synthesized nanostructures and revealed that the positioning of the substrate in the growth solution affects the surface morphology of the nanostructures. The optical absorbance, photoluminescence and Raman spectroscopy of the resulting nanostructures are discussed. The electrical characterization of the Schottky diode such as barrier height, ideality factor, rectification ratios, reverse saturation current and series resistance were found to depend on the nanostructures morphology. In addition, current transport mechanism in the higher forward bias of the Schottky diode was studied and space charge limited current was found to be the dominant transport mechanism in all samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.