Abstract

Electrospun nanofibrous scaffold is a promising implant for peripheral nerve regeneration. Herein, to investigate the effect of surface morphological features and electrical properties of scaffolds on nerve cell behavior, we modified electrospun cellulose (EC) fibrous mats with four kind of soluble conductive polymers derivates (poly (N-(methacryl ethyl) pyrrole) (PMAEPy), poly (N-(2-hydroxyethyl) pyrrole) (PHEPy), poly (3-(Ethoxycarbonyl) thiophene) (P3ECT) and poly (3-thiophenethanol) (P3TE)) by an in-situ polymerization method. The morphological characterization showed that conductive polymers formed aggregated nanoparticles and coatings on the EC nanofibers with the increased fiber diameter further affected the surface properties. Compared with pure EC scaffold, more PC12 cells were adhered and grown on modified mats, with more integral and clearer cell morphology. The results of protein adsorption study indicated that modified EC mats could provide more protein adsorption site due to their characteristic surface morphology, which is beneficial to cell adhesion and growth. The results in this study suggested that these conductive polymers modified scaffolds with special surface morphology have potential applications in neural tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call