Abstract
The present study aimed to examine the impact of sunflower pectin (SFP) on the thermal stability and antioxidant activity of purple sweet potato anthocyanins (PSPA) at varying pH levels. It was observed that the pH value significantly influenced the ability of pectin to protect anthocyanins from thermal degradation, which was found to be associated with the rate of binding between PSPA and SFP. The binding rate of PSPA-SFP was observed to be highest at pH 4.0, primarily due to the influence of electrostatic interaction and hydrogen bonding. Monoacylated anthocyanins exhibited a binding rate approximately 2–4 % higher than that of diacylated anthocyanins. The PSPA-SFP demonstrated its highest thermal stability at pH 4.0, with a corresponding half-life of 14.80 h at 100 °C. Molecular dynamics simulations indicated that pectin had a greater affinity for the flavylium cation and hemiketal form of anthocyanins. The antioxidant activity of anthocyanins in PSPA and PSPA-SFP increased with increasing pH, suggesting that anthocyanins at high pH had higher antioxidant activity than anthocyanins at low pH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.