Abstract

AbstractWe examine the effect of anthropogenic aerosol forcing on the East Asian summer monsoon (EASM) using the Community Atmosphere Model version 5.1.1. One control and two sensitivity model experiments were conducted in order to diagnose the separate roles played by sea surface temperature (SST) variations and anthropogenic sulfate aerosol forcing changes in East Asia. We find that the SST variation has been a major driver for the observed weakening of the EASM, whereas the effect of the anthropogenic aerosol forcing has been opposite and has slightly intensified the EASM over the recent decades. The reinforcement of the EASM results from radiative cooling by the sulfate aerosol forcing, which decelerates the jet stream around the jet's exit region. Subsequently, the secondary circulation induced by such a change in the jet stream leads to the increase in precipitation around 18–23°N. This result indicates that the increase in anthropogenic emissions over East Asia may play a role in compensating for the weakening of the EASM caused by the SST forcing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.