Abstract

Simple SummarySeasonal variations in herbage growth rate and nutrient composition result in low herbage intake which is insufficient to meet the nutritional requirements of cows and limits milk production. The main opportunities for increasing milk production per cow and per ha are a careful pasture management to ensure adequate herbage high-quality and strategic low-cost and high-energy feed supplementation. Supplementation strategies include different combinations of level, type, and processing of supplemental feeds. This study evaluates the effect of supplementation with sugar beet silage, corn silage, or high-moisture corn (HMC) on dairy performance, rumen, and plasma metabolites in dairy cows under conditions of restricted grazing in spring. We found that the supplementation with sugar beet silage allowed milk production, live weight, and fat concentration similar to corn silage and HMC, but with a lower concentration of milk protein than HMC. Results suggest that sugar beet silage can be used as an alternative supplement for high-producing dairy cows under conditions of restricted grazing in the current experiment.A study was undertaken to assess the effect of supplementation with sugar beet silage, corn silage, or high-moisture corn on dairy performance, rumen, and plasma metabolites in dairy cows under conditions of restricted grazing in spring. Eighteen multiparous Holstein Friesian cows, stratified for milk yield (39.4 kg/day ± 3.00), days of lactation (67.0 days ± 22.5), live weight (584 kg ± 38.0), and number of calves (5.0 ± 1.5), were allocated in a replicated 3 × 3 Latin square design. Treatments were as follows: SBS (10 kg DM of permanent pasture, 7 kg DM of sugar beet silage, 4 kg DM of concentrate, 0.3 kg DM of pasture silage, 0.21 kg of mineral supplement); corn silage (10 kg DM of permanent pasture, 7 kg DM of corn silage, 4 kg DM of concentrate, 0.3 kg DM of pasture silage, 0.21 kg of mineral supplement), and HMC (10 kg DM of permanent pasture, 5 kg DM of high-moisture corn, 4.5 kg DM of concentrate, 1.2 kg DM of pasture silage, 0.21 kg of mineral supplement). Pasture was offered rotationally from 9 a.m. to 4 p.m. Between afternoon and morning milking, the cows were housed receiving a partial mixed ration and water ad libitum. The effect of treatments on milk production, milk composition, body weight, rumen function, and blood parameters were analyzed using a linear–mixed model. Pasture dry matter intake (DMI) was lower in SBS than CS (p < 0.05) and similar to HMC, but total DMI was higher in HMC than SBS (p < 0.05) and similar to CS. Milk production for treatments (32.6, 31.7, and 33.4 kg/cow/day for SBS, CS, and HMC, respectively), live weight, and fat concentration were not modified by treatments, but milk protein concentration was lower for SBS compared with HMC (p < 0.05) and similar to CS. B-hydroxybutyrate, cholesterol, and albumin were not different among treatments (p > 0.05), while urea was higher in SBS, medium in CS silage, and lower in HMC (p < 0.001). Ruminal pH and the total VFA concentrations were not modified by treatments (p > 0.05), which averaged 6.45 and 102.03 mmol/L, respectively. However, an interaction was observed for total VFA concentration between treatment and sampling time (p < 0.05), showing that HMC produced more VFA at 10:00 p.m. compared with the other treatments. To conclude, the supplementation with sugar beet silage allowed a milk response and composition similar to corn silage and HMC, but with a lower concentration of milk protein than HMC. In addition, sugar beet silage can be used as an alternative supplement for high-producing dairy cows with restricted access to grazing during spring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call