Abstract

The purpose of the present investigation was to detect the effect of replacement of soybean meal (SBM) with citric waste fermented yeast waste (CWYW) as an alternative protein source of portentous substances in a concentrate mixture diet of beef cattle on intake, digestibility, ruminal fermentation, plasma urea-nitrogen, energy partitioning, and nitrogen balance. Four Thai-native beef bulls (170 ± 10.0 kg of initial body weight) were randomly allocated to a 4 × 4 Latin square design. The dietary treatments were four levels of CWYW replacing SBM in a concentrated diet at ratios of 0, 33, 67, and 100%. SBM was added to the concentrate diet at a dose of 150 g/kg DM. All cattle were offered ad libitum rice straw and the concentrate diet at 5 g/kg of body weight. The study was composed of four periods, each lasting for 21 days. The findings demonstrated that there was no difference in total dry matter intake, nutritional intake, or digestibility between treatments (p > 0.05). When CWYW replaced SBM at 100% after 4 h of feeding, ruminal pH, ammonia nitrogen, plasma urea nitrogen, and bacterial population were highest (p < 0.05). Volatile fatty acids and energy partitioning were not different (p > 0.05) among dietary treatments. Urinary nitrogen excretion was greatest (p < 0.05) for cattle fed CWYW to replace SBM at 100% of the concentrate. However, nitrogen absorption and retention for Thai-native cattle were similar (p > 0.05) among treatments. In conclusion, CWYW may be utilized as a substitute for SBM as a source of protein in Thai-native beef cattle without having an adverse impact on feed utilization, rumen fermentation characteristics, or blood metabolites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.