Abstract

The microclimate in forest ecosystems can be altered by modifications of stand structure due to forest management or natural forest development. Current forest management practices in Central Europe and North America aim to promote structural heterogeneity and maintain forest canopy cover, which is known to be a major driver of forest microclimate. Here, we investigated the impacts of forest management and structural heterogeneity on the diurnal temperature range (DTR) in 128 managed forest stands in three climatically different locations (Swabian Alb, Hainich-Dün and Schorfheide-Chorin) in Central Europe. Increasing structural heterogeneity by promoting tree size diversity and differentiation increased vertical stratification and resulted in an impaired DTR during the vegetation period. Linear regression models with geographic location, elevation above sea level, canopy openness and measures of structural heterogeneity as explanatory variables explained 79.4–80.9% of variance in DTR. However, the overall effect of structural heterogeneity on DTR was small. Differences in DTR between plots of different main tree species could be attributed to differences in canopy openness and light transmission, whereas tree species diversity had no significant effect on DTR. Unmanaged forests were characterized by a significantly lower DTR than managed, even-aged forests. DTR in uneven-aged stands managed under single tree selection was comparable to unmanaged stands. Terrestrial laser scanning (TLS) derived measures of canopy openness and vertical structure allowed to explain 79.4% of variance in DTR considering geographic location and elevation, which can also be assessed by TLS with integrated GPS and an altimeter. We conclude that structural characteristics of forest stands other than canopy openness contribute marginally to variation in forest microclimate. However, the analyses of structure-microclimate analyses indicate that effects of stand structure on DTR might be more pronounced in regions with low precipitation during the vegetation period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call