Abstract

<p indent="0mm">A field research was conducted in the Agricultural High-tech Demonstration Park in Horqin District of Tongliao, Inner Mongolia, using the maize variety Nonghua 101 with two cropping modes, including strip-till with staggered planting (seeding strip tillage, <sc>15 cm</sc> + <sc>45 cm</sc> narrow-double row staggered sowing, TGCW) and conventional tillage with equal row space (rotary tillage with row space of <sc>60 cm,</sc> CK), and three planting densities (67,500 plants hm<sup>–2</sup>, 82,500 plants hm<sup>–2</sup>, and 97,500 plants hm<sup>–2</sup>) in 2017 and 2018 to study the effect of strip-till with staggered planting on regulating spring maize yield formation and coordination characteristics of shoot-root in irrigation areas of Xiliao river plain. The model of that strip-till with staggered planting enhanced maize yield by 13.1% and 13.8% in 2017 and 2018, under the planting density 82,500 plants hm<sup>–2</sup> compared with CK, respectively. The strip-till with staggered planting showed a distinct advantage on the amount and rate of dry matter accumulation after silking, which obviously delayed the senility of leaves in later growth stage, meanwhile, compared with CK, the light transmittance significantly increased in or above panicle layers. The leaf area index, net photosynthetic rate and population photosynthetic potential in the model of strip-till with staggered planting were higher than those in CK in late growth stage. At later growing stage, the strip-till with staggered planting had significantly higher root dry weight than CK in different soil layers, with the highest root ratio in <sc>20–60 cm,</sc> especially under higher planting density. The grain yield against per unit of root weight at silking and root-shoot ratio at maturity had a distinct advantage. In conclusion the strip-till with staggered planting combined with high planting density can increase light transmission rate in above-spike layer in late growing stage, alleviate leaf area decline, increase production capacity, facilitate root growth and increase root ratio in deeper soil layers. Shoot-root coordination under dense planting is one of the main reasons facilitating yield increase of spring maize in irrigation areas of Xiliao river plain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.