Abstract

We studied the effect of stimulus intensity on latencies of short-latency somatosensory evoked potentials (SSEP) by measuring both onset and peak latencies individually. The latencies of N9, N13, N20 and N9-N13 peripheral conduction time (PCT) of median nerve (MN) SSEP, and N8, N23, P37 and N8-N23 PCT of tibial nerve (TN) and sural nerve (SN) SSEP significantly shortened with increasing stimulus intensity by onset latency measurement. However, those latencies by peak latency measurement were less significantly shortened or had only a trend of latency shortening without statistical significance. In contrast to PCT, N13-N20 central conduction time (CCT) of MN-SSEP and N23-P37 CCT of TN- or SN-SSEP showed no latency changes with the increased stimulus intensity by both onset and peak latencies measurement. As peak latencies had greater interindividual variability than onset latencies shown by larger standard deviation, shortening of onset latencies were more consistent than that of peak latencies. We think shortening of onset latencies indicates the recruitment of faster conduction fiber along with increased stimulus intensity. As the degree of latency shortening was less if stimulus intensity was above 2.5 times sensory threshold, the stimulus intensity greater than 2.5 times the sensory threshold should be used for clinical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call