Abstract

ABSTRACTThis study was conducted to investigate the effect of steeping conditions of waxy rice, temperatures (15, 25, and 35°C) and time periods (1, 11, and 21 days) on the expansion ratio of gangjung (a traditional Korean oil‐puffed rice snack). Physicochemical properties of waxy rice flour steeped under various conditions and expansion properties of gangjung made of the steeped waxy rice flour were investigated, and multiple regression analyses were applied between those properties to identify major physicochemical factors that optimally predict the expansion ratio of gangjung. As steeping temperature and time periods of waxy rice changed from the lowest to the highest, the expansion ratio of gangjung markedly increased (from 1,022 to 2,533%). Yet, the expansion ratio of the waxy rice sample steeped for 11–21 days at 35°C was not significantly different from the sample steeped for 21 days at 25°C, indicating that the lengthy steeping process for gangjung making can be shortened by increasing the steeping temperature. Physicochemical properties include moisture (γ = 0.85), protein (γ = –0.91), ash (γ = –0.84), potassium (γ = –0.89), magnesium (γ = –0.88), phosphorous (γ = –0.91), peak viscosity (γ = 0.77), and breakdown (γ = 0.94) of steeped waxy rice flour. These properties were highly correlated with expansion ratio (P < 0.01). Multiple regression analysis showed that the expansion ratio of gangjung was predicted successfully by the phosphorous content and breakdown value of steeped waxy rice flour.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.