Abstract

The freely-suspended glass membranes in a dual-nanoweb fiber, driven at resonance by intensity-modulated light, exhibit a giant optomechanical nonlinearity. We experimentally investigate the effect of squeezed-film damping by exploring the pressure dependence of resonant frequency and mechanical quality factor. As a consequence of the unusually narrow slot between the nanowebs (22 μm by 550 nm), the gas-spring effect causes a pressure-dependent frequency shift that is ∼15 times greater than typically measured in micro-electro-mechanical devices. When evacuated, the dual-nanoweb fiber yields a quality factor of ∼3 600 and a resonant optomechanical nonlinear coefficient that is ∼60 000 times larger than the Kerr effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.