Abstract

The ZnO films in which the crystallite c-axis is unidirectionally aligned in the substrate plane [(112̄0) textured ZnO films] enable the realization of shear mode devices in the ultra high frequency (UHF) range. In this study, we have investigated the (112̄0) textured ZnO film, focusing on the effect of total gas pressure and partial gas pressure of oxygen and argon during sputtering deposition. The crystallographic characteristics of the films were measured by X-ray diffraction (XRD) analysis. In addition, optical emissions from the RF plasma were analyzed to investigate the effect of ionic species on the growth of the ZnO films. Highly crystallized (112̄0) textured ZnO films were obtained under the conditions of low total gas pressure and high oxygen gas concentration. Under these conditions, strong optical emission spectra from oxygen species were observed. From these results, we conclude that energetic oxygen particle bombardment to the substrate contributes to the (112̄0) texture formation. The film with an ω-scan rocking curve FWHM of 3.3° showed a k15 value of 0.16, which was 62% of the value for a single crystal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.