Abstract

This study aims to evaluate the effectiveness of the dietary addition of Spirulina platensis (SP) and/or garlic powder (GP) on heat-stressed broiler chickens. For this purpose, 600 Ross-308 broiler chicks were allocated at 22 days of age into five groups (G1-G5), each comprising six groups of 20 birds each. Chickens kept in G1 (negative control) were fed a basal diet and raised at 26 ± 1 °C. Chickens kept in G2 to G5 were exposed to periodic heat stress (35 ± 1 °C for 9 h/day) from 22 to 35 days old. Chickens in G2 (positive control) were provided a basal diet, while G3, G4, and G5 were fed a basal diet enriched with SP (1 g/kg diet), GP (200 mg/kg diet), or SP/GP (1 g SP/kg + 200 mg GP/kg diet), respectively. The assessment parameters included the chickens' performance, malondialdehyde and total antioxidant capacity, blood biochemistry, intestinal morphology, and modulation of lactobacilli and total coliforms in the intestinal microbiota. Our findings demonstrated that supplementing heat-stressed chickens with SP and/or GP significantly mitigated the negative effects on the European production efficiency index (EPEF), survival rate, cholesterol profile, and oxidative stress markers. Chickens supplemented with GP and/or SP exhibited significantly better EPEF and survivability rates. Heat stress had a significant impact on both the gut structure and gut microbiota. However, SP and/or GP supplementation improved the gut morphology, significantly increased the intestinal lactobacilli, and reduced the coliform contents. It was also found that the simultaneous feeding of SP and GP led to even higher recovery levels with improved lipid metabolites, immunity, and oxidative status. Overall, supplementing chickens with SP and/or GP can alleviate the negative effects of heat stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.