Abstract
The effects of spatial variability of soil properties on the behaviour of a cohesive and a cohesionless soil profile subjected to seismic excitation are analysed. The input data for the random fields are derived from existing, extensive soil investigations, and Monte Carlo simulation technique, combining digital generation of non-Gaussian stochastic vector fields with dynamic, equivalent linear and nonlinear finite element analyses, is used for this purpose. It is found that the variability of shear wave velocity has small effect on the ground surface response spectrum. The motion intensity and the variation of soil properties in the deterministic description of the profile considerably affect the standard deviation of the surface spectral acceleration, which is successively compared to the uncertainty introduced in attenuation relationships, used for the construction of hazard-consistent design spectra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.