Abstract
Remote sensing represents a powerful tool to derive quantitative and qualitative information about ecosystem biodiversity. In particular, since plant species richness is a fundamental indicator of biodiversity at the community and regional scales, attempts were made to predict species richness (spatial heterogeneity) by means of spectral heterogeneity. The possibility of using spectral variance of satellite images for predicting species richness is known as Spectral Variation Hypothesis. However, when using remotely sensed data, researchers are limited to specific scales of investigation. This paper aims to investigate the effects of scale (both as spatial and spectral resolution) when searching for a relation between spectral and spatial (related to plant species richness) heterogeneity, by using satellite data with different spatial and spectral resolution. Species composition was sampled within square plots of 100 m 2 nested in macroplots of 10,000 m 2. Spectral heterogeneity of each macroplot was calculated using satellite images with different spatial and spectral resolution: a Quickbird multispectral image (4 bands, spatial resolution of 3 m), an Aster multispectral image (first 9 bands used, spatial resolution of 15 m for bands 1 to 3 and 30 m for bands 4 to 9), an ortho-Landsat ETM+ multispectral image (bands 1 to 5 and band 7 used; spatial resolution, 30 m), a resampled 60 m Landsat ETM+ image. Quickbird image heterogeneity showed a statistically highly significant correlation with species richness ( r = 0.69) while coarse resolution images showed contrasting results ( r = 0.43, r = 0.67, and r = 0.69 considering the Aster, Landsat ETM+, and the resampled 60 m Landsat ETM+ images respectively). It should be stressed that spectral variability is scene and sensor dependent. Considering coarser spatial resolution images, in such a case even using SWIR Aster bands (i.e. the additional spectral information with respect to Quickbird image) such an image showed a very low power in catching spectral and thus spatial variability with respect to Landsat ETM+ imagery. Obviously coarser resolution data tend to have mixed pixel problems and hence less sensitive to spatial complexity. Thus, one might argue that using a finer pixel dimension should inevitably result in a higher level of detail. On the other hand, the spectral response from different land-cover features (and thus different species) in images with higher spectral resolution should exhibit higher complexity. Spectral Variation Hypothesis could be a basis for improving sampling designs and strategies for species inventory fieldwork. However, researchers must be aware on scale effects when measuring spectral (and thus spatial) heterogeneity and relating it to field data, hence considering the concept of scale not only related to a spatial framework but even to a spectral one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.