Abstract

Sodium laurylsulfate (SLS), an anionic surfactant, was used for tailoring calcite via a solution route. SLS was dissolved in calcium and carbonate source solutions at various concentrations and critical micelle concentrations (CMCs). The crystallized particles were characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), laser-scattering particle size measurements, and thermogravimetric analysis (TGA). Energy dispersive spectroscopy (EDS) analysis was carried out to measure sulfur profiles on the surface of the particles. SLS tended to produce small calcite particles in the carbonate source solution, whereas this effect was not obvious in the calcium source solution. It is believed that the electrostatic repulsion force in the carbonate source solution contributes to the different particle refining effects of SLS seen in the two solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call