Abstract

Objective To investigate the DNA methylation feature and DNA methylation regulation to its transcription and expression of O6-methylguanine-DNA methyltransferase gene (MGMT) in NaAsO2-treated HaCaT cells. Methods HaCaT cells were treated 72 hours at intervals and repeatedly by 3.13, 6.25,12.50, and 25.00 μmol/L NaAsO2, MGMT gene promoter region was amplified in the transcription initiation site - 329 - + 93 region by bisulfate-sequencing polymerase chain reaction (BSP), the mRNA transcription and the protein expression of MGMT was detected by real-time quantitative PCR and Western blotting. NaAsO2-untreated HaCaT cell was set as a blank control, and human epidermal squamous carcinoma cell strain A431 was set as a positive control. Results Among the groups of HaCaT cells treated with 3.13, 6.25, 12.50 and 25.00 μmol/L NaAsO2, the positive rates of the DNA methylation of promoter region in MGMT gene were 0.63%(l/160), 6.25% (10/160), 10.63%( 17/160) and 18.75% (30/160), respectively, and methylated CpG sites were mainly located in - 249--146 region relative to transcription start site. There was no DNA methylation in the blank control. There were significant differences between the blank control and the NaAsO2-treated cells (x2 = 76.687, P< 0.05). Average levels of MGMT mRNA were 1.518 31 ± 0.180 54, 1.425 22 ± 0.180 39, 1.014 54 ± 0.096 79 and 0.887 72 ± 0.020 00, respectively among the groups of HaCaT cells treated with 3.13, 6.25, 12.50 and 25.00 μmol/L NaAsO2, compared with the blank control cells(1.198 29 ± 0.159 97), there were significant differences(F = 37.359, P < 0.05). Average levels of MGMT protein were 1.174 47 ± 0.064 75, 0.848 83 ± 0.057 01, 0.471 63 ± 0.023 34 and 0.240 34 ± 0.014 43, respectively among the groups of HaCaT cells treated with 3.13, 6.25, 12.50 and 25.00 μmol/L NaAsO2, compared with the blank control cells (1.066 19 ± 0.061 24), there were significant differences(F = 20.687, P < 0.05). Conclusions Arsenic can cause CpC island hypermethylation in the promoter region of MGMT gene, which results in inhibited MGMT mRNA transcription and protein expression. It might be one of the important mechanisms of arsenic-induced skin lesion. Key words: Arsenic; DNA methylation; Transcription, genetic; Proteins; O6-methylguanineDNA methyltransferase gene

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call