Abstract
BackgroundRecently, a single nucleotide polymorphism (SNP) rs9514089 in SLC10A2 (apical sodium-dependent bile acid transporter gene) has been identified as a susceptibility variant for cholelithiasis in humans.MethodsHere we assessed the effects of rs9514089 on gallstone risk and related phenotypes of the metabolic syndrome in the self-contained population of Sorbs (183 cases with gallstones/826 controls). Furthermore, we performed a meta-analysis for effects of rs9514089 on susceptibility for cholelithiasis in three independent cohorts (Stuttgart: 56 cases/71 controls, Aachen: 184 cases/184 controls and Sorbs).ResultsThere was no significant association of rs9514089 with gallstone risk, serum lipid parameters and BMI in the Sorbs and in the meta-analysis of all three cohorts (p > 0.05). There was an effect trend in the subgroup of lean subjects but based on different effect directions in the three cohorts there was no significant association in the meta-analysis.ConclusionsWe were not able to replicate the effect of rs9514089 on gallstone risk in the Sorbs. Further analyses in larger cohorts are required to finally assess the role of genetic variants in SLC10A2 in human gallstone development and lipid metabolism.
Highlights
A single nucleotide polymorphism (SNP) rs9514089 in SLC10A2 has been identified as a susceptibility variant for cholelithiasis in humans
The recent study by Renner et al suggested that a single nucleotide polymorphism (SNP) rs9514089 mapping within the SLC10A2 locus is a genetic determinant of gallstone disease, expressing gender and weight specificity with higher risk observed in men and in normalweight subjects [19]
Since the sample sizes of the two cohorts from Germany included in the recent study were rather small (N = 127 from Stuttgart and N = 368 from Aachen), we assessed the effects of rs9514089 on gallstone risk and related phenotypes of the metabolic syndrome in the self-contained population of Sorbs and performed a meta-analysis for effects of rs9514089 on susceptibility for cholelithiasis in the three independent cohorts (Stuttgart, Aachen and Sorbs)
Summary
A single nucleotide polymorphism (SNP) rs9514089 in SLC10A2 (apical sodium-dependent bile acid transporter gene) has been identified as a susceptibility variant for cholelithiasis in humans. Human and murine data suggest a strong genetic component for the risk of gallstone formation [7,8,9,10,11,12,13,14,15,16,17,18]. Renner et al have identified SLC10A2 (apical sodium-dependent bile acid transporter; protein name ASBT) as a novel susceptibility gene for cholelithiasis in humans [19]. The recent study by Renner et al suggested that a single nucleotide polymorphism (SNP) rs9514089 mapping within the SLC10A2 locus is a genetic determinant of gallstone disease, expressing gender and weight specificity with higher risk observed in men and in normalweight subjects [19].
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have