Abstract

The effects of SiO2 additives on microstructure, piezoelectric and mechanical properties were investigated for Pb0.98Sr0.02(Mn1/3Sb2/3)0.05Zro.48Ti0.47O3 (PMS-PZT) ternary system close to the morphotropic phase boundary. Piezoelectric coefficient (d33) and electromechanical coupling factor (Kp) considerably deteriorated with the substitution of SiO2 increased. On the other hand, the mechanical quality factor (Qm) increased, the maximum value was 1800. Fracture strength of 1.0 wt% SiO2 added the specimens reached to 106.54 MPa which was about 1.4 times higher than pure PMS-PZT ceramic. The rapid improvement of fracture strength probably due to the decrease of grain size, pore distribute and the second phase (redundant Si4+ ions) segregating on the grain boundary which enhanced the bond energy of grain boundary. The optimized concentration of SiO2 doped PMS-PZT ceramics was 0.4 wt% for high power application: d33 = 300 PC/N, Kp = 0.51, Qm = 1500, tand = 0.32% and the fracture strength was 88.5MPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.