Abstract
By analyzing the effects of acid rain and nitrogen deposition on the structure and diversity of soil bacterial communities, the response mechanism of Masson pine forests to environmental stress was investigated, providing a theoretical reference basis for resource management and conservation in Tianmu Mountain National Nature Reserve. Four treatments of the simulated acid rain and nitrogen deposition were set up in 2017 to 2021 in Tianmu Mountain National Nature Reserve (pH value of 5.5 and 0 kg·(hm2·a)-1, CK; pH value of 4.5 and 30 kg·(hm2·a)-1, T1; pH value of 3.5 and 60 kg·(hm2·a)-1, T2; pH value of 2.5 and 120 kg·(hm2·a)-1, T3). The differences in soil bacterial community composition and structure among treatments and their influencing factors were analyzed by collecting soils from four treatments, using the Illumina MiSeq PE300 second-generation high-throughput sequencing platform. The results showed that acid rain and nitrogen deposition significantly reduced soil bacterial α-diversity (P<0.05) in a Masson pine forest. The Masson pine forest soils consisted of 36 phylum groups of mycota, with Acidobacteria, Proteobacteria, Actinobacteria, and Chloroflexi as the main bacterial phyla (relative abundance>1%) in the Masson pine forest soils. Flavobacterium, Nitrospira, Haliangium, Candidatus_Koribacter, Bryobacter, Occallatibacter, Acidipla, Singulisphaera, Pajaroellobacter, and Acidothermus, which showed significant changes in relative abundance under the four treatments, could be used as indicator species for changes in soil bacterial communities under acid rain and nitrogen deposition stress. Soil pH and total nitrogen were influential factors in the diversity of soil bacterial communities. As a result, acid rain and nitrogen deposition increased the potential ecological risk, and the loss of microbial diversity will change the ecosystem function as well as reduce the stability of the ecosystem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.