Abstract

Dodecylbenzenesulfonic acid (DBSA)-doped polyaniline (PAND) has been synthesized by redoping (PANDR) and aqueous polymerization (PANDA) methods. Silver nanoparticles were incorporated into the PANDR/tetrahydrofuran solution (PANDS) and then mixed with poly (vinyl chloride) (PVC) solution to prepare PANDS/PVC nanocomposites. In the present study, effects of silver nanoparticles on thermal properties of PAND/PVC blends have been investigated by employing thermal gravimetric analysis and heat flow microcalorimetry techniques. From these results it has been observed that the thermal stability of blends have increased by increasing the concentration of PAND in blends and nanocomposites. Addition of silver nanoparticles has suppressed the dehydrochlorination process and evolution/degradation of DBSA in PANDS/PVC nanocomposites. Presence of silver nanoparticles in PAND/PVC nanocomposites has reduced the mobility of PANI chains which in turn inhibited the transfer of free radicals formed during degradation of PAND and PVC through inter-chain reactions; hence, degradation process has been slowed down and thermal stability has been improved. Embedment of silver nanoparticles has reduced thermal weight loss corresponding to polymer degradation step and attains lower heat flow level in inert atmosphere for nanocomposites in contrast to those with no nanoparticles, thereby further improving thermal stability of nanocomposites. The heats of oxidation measured for blends and nanocomposites were independent of PAND/PVC blends composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.