Abstract

The effect of silanization on the mechanical, chemical, and physical properties of dental composites was investigated. Silica fillers were obtained from colloidal silica solution, Ludox® HS-40 and they were silanized by using 3-methacryloxypropyl trimethoxysilane (MPTMS) in an acidic media. Mineralogical and chemical structures of unsilanized and silanized fillers were determined by using XRD and FT-IR analyses. The modification of unsilanized/silanized fillers were investigated by performing XPS and TGA analyses. The morphological evaluations, surface area, and particle size measurements were performed by using SEM, BET, and Zeta-Sizer, respectively. Eventually, pure and amorphous silica fillers were obtained. Furthermore, the weight percentage of the silane in silica/silane structure was compatible with theoretical values. SEM images, surface area, and particle size measurements showed that agglomeration tendencies of silanized fillers were lower compared to silanized fillers because of the MPTMS addition. Experimental composites (5/10/10/5BisGMA/HEMA/UDMA/TEGDMA resin reinforced with 70wt% silanized/unsilanized SiO2) were fabricated into 4mm diameter×6mm thick discs for compressive strength (CS), angular flexural strength (AFS), curing depth (CD), and polymerization shrinkage (PS) on a 25×2×2mm rectangular Teflon mold for flexural strength (FS) and modulus of elasticity (E) tests. The curing depth (CD) and degree of polymerization percentage (DP) of composites were determined. Consequently, results showed that mechanical properties and DP of composite resins can be greatly influenced by silanization as a result of the organic matrix-inorganic filler interface bonding formed by silane structures. Despite of these findings, silanization of the SiO2 was not effected DC and PS values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.