Abstract

The flow properties of aggregating red cell suspensions flowing at low flow rates through horizontal tubes are analyzed using a theoretical model. The effects of sedimentation of small aggregates, which will be formed at comparatively high flow rates, on the relative apparent viscosity are considered. In the case in which a large number of small aggregates are formed in a suspension flowing through a horizontal tube, it seems that red cells are transported as a concentrated suspension through the bottom part of the tube because of sedimentation of aggregates. A two-layer flow model is used for the distribution of red cells. It consists of plasma in the upper part and a concentrated red cell suspension in the bottom part of the tube divided by a smooth and horizontal interface. It is assumed that the suspension is a Newtonian fluid whose viscosity increases exponentially with hematocrit. The velocity distribution, the relative apparent viscosity and the flux of red cells are calculated as functions of width of plasma layer for a different discharge hematocrit. The theoretical results are compared with the results obtained from experimental data. The relative apparent viscosity increases rapidly with an increasing degree of sedimentation over a wide range of plasma layer widths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.