Abstract
The propagation and switching of short pulses in an active two-core fiber nonlinear directional coupler have been investigated theoretically by using the split-step Fourier method. The analysis highlights the effects of the second-order coupling coefficient dispersion, the linear gain coefficient, and the finite-gain bandwidth on the switching and propagation of short pulses. The research indicates that the linear gain can sharpen the switching characteristic and reduce considerably the switching threshold power, as well as significantly increase the switching efficiency with the influences of the second-order coupling coefficient dispersion. However, both the second-order coupling coefficient dispersion and the finite-gain bandwidth degrade the switching characteristics. In addition, the finite-gain bandwidth of linear gain not only suppresses significantly the pulse compression and amplification caused by the linear gain coefficient, but also suppresses effectively the frequent pulse fluctuation on pulse propagation induced by the second-order coupling coefficient dispersion; consequently, as in the case of the passive fiber coupler, optical pulses tend to restore periodical coupling propagation in active two-core fiber coupler.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.