Abstract

The airway acts as the first defense against inhaled pathogens and particulate matter from the environment. One major way for the airway to clear inhaled foreign objects is through mucociliary clearance (MCC), an important component of the respiratory innate immune defense against lung disease. MCC is characterized by the upward movement of mucus by ciliary motion that requires a balance between the volume and composition of the mucus, adequate periciliary liquid (PCL) volume, and normal ciliary beat frequency (CBF). Airway surface fluid (ASL) is a thin layer liquid that consists of the highly viscous mucus upper “gel” layer, and the watery lubricating lower “sol” layer. Mucus production, secretion and clearance are considered to play a critical role in maintenance of airway health because it maintains hydration in the airway and traps particulates, bacteria, and viruses. Different types of epithelial cells, including secretory cells, and ciliated cells, contribute to the MCC function. Cigarette smoke (CS) contains chemicals and particulates that significantly affect airway secretion. Active and passive CS-induced chronic obstructive pulmonary disease (COPD) is frequently associated with hyperplasia of goblet cells and submucosal glands (SMGs), thus increasing the secretory capacity of the airways that impairs MCC.

Highlights

  • CIGARETTE SMOKE AND SECOND HAND SMOKE (SHS) Cigarette smoking (CS) is the single largest cause of preventable disease, disability, and death globally

  • When a CS aerosol is drawn into the respiratory tract (RT), a portion of each compound of interest will initially be in the gas phase, and a portion will be in the particle phase

  • Cilia beat within a periciliary liquid (PCL) layer with low viscosity for which PCL is the “sol” layer with a height that approximates the length of the outstretched cilia and keeps mucus at an optimal distance from the underlying epithelia, affecting the clearance of mucus (Knowles and Boucher, 2002; Tarran, 2004)

Read more

Summary

Liu and Di

Smoke and mucociliary clearance several proatherosclerotic changes, including endothelial damage related to oxidative stress and inflammation, increased platelet aggregation, and increased arterial stiffness (Venn and Britton, 2007; Jefferis et al, 2010). LUNG EPITHELIAL CELLS AND MCC In addition to acting as a physical barrier, airway epithelium regulates fluid balance, modulates metabolism and clearance of inhaled agents, and secretes numerous mediators (Knight and Holgate, 2003). The MCC function is a coordinated action of lung epithelial cells that include a variety of cell types such as mucous, serous, goblet, ciliated, Clara, and basal cells (Figure 1). Serous cells are the most abundant secretory cells in human airway glands (estimated serous/mucous cell volume ratio is 60%:40%) with variable numbers of electron-dense granules that contain large quantities of enzymes. They have irregularly shaped basally oriented nuclei, a perinuclear zone containing

Ciliated epithelial cells
Contribute to airway mucus
Bronchi and bronchioles
Findings
CONCLUSIONS
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.