Abstract
Polymeric composite sandwich structures, often manufactured using a thick foam core material and thin composite facings, are of significant interest in naval applications. This paper summarizes the coupled effect of sea water and low temperature on the mechanical properties of closed cell polymeric H100 foam core material. The study considers the effects of harsh sea environmental conditions on the fracture and deformation behavior of such a foam material under complex loading conditions that include tension, torsion, compression, and true-triaxial stress paths. Mechanical testing techniques are developed using coupon samples of suitable geometry that minimize grip effects on these low density complex foam materials, along with information associated with the observed cross-anisotropic behavior. Interfacial delamination fracture response for the sandwich structures due to the combined effects of sea water and low temperature are evaluated and the associated degradation in critical energy release rate for delamination is found to be substantial. Experimental data for H100 foam cores associated with moisture induced expansional strains are also included.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have