Abstract
AbstractUsing 2‐year platform observations, this study investigates seasonal characteristics of sea land breeze (SLB) and how it influences air‐sea turbulent heat fluxes (THFs) in the coastal areas of East China Sea (ECS) in different seasons. Unlike other SLB studies, this study uses hourly observation on a sea platform to explore SLB's effect on both air‐sea latent heat and sensible heat transferring. The results show that sea wind (SW) does not have an obvious seasonal variation pattern while land wind (LW) is stronger in autumn and winter. The SLB day number shows a clear seasonal variation pattern, which accounts for 38.04% and 18.23% of summertime and wintertime days, reaching its peak and bottom respectively. The latent heat flux (LHF) and sensible heat flux (SHF) are high in autumn and winter while low in summer. The SLB‐contributed LHF and SHF reach peaks in autumn and winter, which are 61.07 and 7.39 W/m2 respectively. The contribution importance of SLB on air‐sea sensible/latent heat transferring is highest in summer while lowest in winter. On SLB days, the SHF decreases significantly by at least about 50% while LHF decreases moderately in all seasons, among which spring witnesses an inversion of sensible heat transferring direction. The warming effect of SLB is mainly responsible for the slump of SHF on SLB days. Multiple factors including relative humidity (RH), background wind field and in situ radiation cause the LHF decrease together, whose changing range varies with season.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have