Abstract
In tissue engineering, cell culture scaffolds have been widely used in combination with electrical stimulation to promote multiple cellular outcomes, like differentiation and proliferation. Nevertheless, the influence of scaffolds on the electric field delivered inside a bioreactor is often ignored and requires a deeper study. By performing numerical analysis in a capacitively coupled setup, this work aimed to predict the effects of the scaffold presence on the electric field, considering multiple combinations of scaffold and culture medium electrical properties. We concluded that the effect of the scaffold on the electric field in the surrounding culture medium was determined by the difference in electrical conductivity of these two materials. The numerical simulations pointed to significant variations in local electric field patterns, which could lead to different cellular outcomes and confound the interpretation of the experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.