Abstract

Kochia sieversiana (Pall.) C.A. Mey. is a forage plant that can grow in extremely alkalinized grasslands at pH 10 or higher. Accumulation of a large amount of oxalic acid (OxA) is a primary characteristic of K. sieversiana. In our study, seedlings of K. sieversiana were exposed to the following conditions: non-stress, salinity (200 mM, a molar ratio of NaCl and Na2SO4 1:1), and alkali stress (200 mM, a molar ratio of NaHCO3 and Na2CO3 1:1). Growth, water content, content of organic acids (including OxA), Na+, and K+, and activities of some OxA metabolism-related enzymes were determined. Results show that glycolate oxidase was the key enzyme for OxA synthesis; however, the carboxylation of phosphoenolpyruvate (PEP) by PEP carboxylase (PEPC) probably played a minor role in the OxA-synthetic pathway. The pathway of L-ascorbic acid catabolism was not the main source of OxA accumulation, and the activity of oxalate oxidase (OxO) involved in OxA decomposition was not a limiting factor for inner OxA accumulation. Taken together, accumulation of a large amount of OxA are not related to the degradation and secretion function of OxO but largely depend upon its synthetic function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.