Abstract

Effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of Suaeda glauca (Bge.), an alkali-resistant succulent halophyte, were compared. The results showed that alkali stress clearly inhibited the growth of S. glauca. Moreover, the concentrations of Na+ and K+ both increased with increasing salinity under both stresses, suggesting no competitive inhibition between absorptions of Na+ and K+. The mechanism underlying osmotic adjustment during salt stress was similar to alkali stress in shoots. The shared essential features were that organic acids, betaine and inorganic ions (dominated by Na+) mostly accumulated. On the other hand, the mechanisms governing ionic balance under both stresses were different. Under salt stress, S. glauca accumulated organic acids and inorganic anions to maintain the intracellular ionic equilibrium, but the anion contribution of inorganic ions was greater than that of organic acids. However, the concentrations of inorganic anions under alkali stress were significantly lower than those under salt stress of the same intensity, suggesting that alkali stress might inhibit uptake of anions, such as NO3 – and H2PO4 –. Under alkali stress, organic acids were the dominant factor in maintaining ionic equilibrium. The contribution of organic acids to anions was 74.1%, while that of inorganic anions was only 25.9%. S. glauca enhanced the synthesis of organic acids, dominated by oxalic acid, to compensate for the shortage of inorganic anions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call