Abstract

Objective: To study the effects of salivary microbiota in patients with periodontitis on the tryptophan-aryl hydrocarbon receptor (AhR) signaling axis in mice with periodontitis and to provide theoretical basis as well as new ideas for the influences of periodontitis on systemic metabolism. Methods: Salivary microbiota of 12 healthy individuals and 14 patients with periodontitis were collected in Nanjing Stomatological Hospital, Medical School of Nanjing University from June to December of 2020. According to the random number table method, twenty-four mice were randomly divided into three groups: Sham group (control group), P group (periodontitis patients' salivary microbiota group) and H group (periodontal healthy individuals' salivary microbiota group). The maxillary second molars of all mice were treated with silk thread ligation to induce periodontitis. Phosphate buffer as well as salivary microbiota of periodontal healthy individuals and periodontitis patients were gavaged into periodontitis mice for 2 weeks. The expression of inflammatory factors in mice serum were detected by enzyme linked immunosorbent assay, and the expression of tryptophan and indole metabolites in intestinal tract and serum were detected by liquid chromatography-mass spectrometry. The expression of AhR in intestinal tract of mice was detected by immunohistochemistry and quantitative real time-PCR while gut microbiota constitution was detected by 16S rRNA gene sequencing. The remaining saliva samples of periodontitis patients and periodontal healthy individuals were applied to detect the expression of tryptophan and indole metabolites themselves. Results: The salivary microbiota of periodontitis patients could induce the expression of interleukin-1β [P group: (162.38±39.46) pg/ml, H group: (82.83±20.01) pg/ml; t=4.40, P=0.001) and tumor necrosis factor-α [P group: (361.16±123.90) pg/ml, H group: (191.66±106.87) pg/ml; t=2.54, P=0.030) in serum of periodontitis mice, and reduce the expression of AhR in colon (P group: 1.18±0.05, H group:1.83±0.47; t=3.09, P=0.015) and ileum (P group: 0.80±0.13, H group: 1.18±0.11; t=4.93, P=0.001). After gavage of salivary microbiota of periodontitis patients to the mice, tryptophan (P group: (18.1±3.8)×107, H group: (26.6±6.6)×107; t=2.49, P=0.037] and indole lactic acid [P group: (1.9±0.7)×107, H group: (3.7±0.6)×107; t=4.49, P=0.002) in serum of periodontitis mice were significantly decreased, but was relatively disorder in intestinal tract. However, the expressions of tryptophan and indole metabolites in saliva of periodontitis patients were higher than those of periodontal healthy individuals. There were significant differences in indole propionic acid [P group: (1 239.39±818.72) nmol/L, H group: (56.96±38.33) nmol/L; t=2.83, P=0.022]. What we find noteworthy was that the expressions of indolelactic acid metabolism in saliva, serum and intestinal were consistent, and salivary microbiota of periodontitis patients could reduce the relative abundance of indolelactic acid-producing bacteria in the gut, suggesting that the salivary microbiota of periodontitis patients might affect the expression of AhR through gut microbiota disorder and indolelactic acid downregulation. Conclusions: Salivary microbiota in patients with periodontitis may affect the systemic inflammatory state through down-regulating the expression of tryptophan-AhR signal axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.