Abstract

In this study, steady-state three-dimensional turbulent forced convection flow and heat transfer characteristics in a circular pipe with baffles attached inside pipe have been numerically investigated under constant wall heat flux boundary condition. Numerical study has been carried out for Reynolds number Re of 3000-50,000, Prandtl number Pr of 0.71, baffle distances s/D of 1, 2, and 3, and baffle angle a of 30o-150o. Ansys Fluent 12.0.1 software has been used to solve the flow field. It is observed that circular pipe having baffles has a higher Nusselt number and friction factor compared to the smooth circular pipe without baffles. Maximum Nusselt number and friction factor are obtained for the baffle angle of 90o. Nusselt number increases while baffle distance increases in the range of studied; however, friction factor decreases. Periodically fully developed conditions are obtained after a certain module. Thermal performance factor increases with increasing baffle distance in the rage of studied but decreases with increasing Reynolds number; maximum thermal performance factor is obtained for the baffle angle of 150?. Results show that baffle distance, baffle angle, and Reynolds number play important role on both flow and heat transfer characteristics. The accuracy of the results obtained in this study is verified by comparing the results with those available in the literature for smooth circular pipes. All the numerical results are correlated within accuracy of ?10 and ?15% for average Nusselt number and Darcy friction factor, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call