Abstract

Alkaline phosphatase (ALP) is a glycoenzyme that is highly expressed during carcinogenesis and is induced by retinoic acid (RA) in various cells. We investigated the effects of RA on N-linked glycosylation of the tissue nonspecific liver/bone/kidney- type of ALP (L/B/K ALP), on ALP transcripts, and on total protein glycosylation in two neuronal cell lines, P19 and NG108CC15, and in primary cultures of neonatal rat brain. ALP activity was determined in cell extracts and found to be induced by RA. Tunicamycin was used at various concentrations to inhibit protein N-glycosylation. After treatment of cells with low concentrations (0.1 and 0.125 microgram/ml) of tunicamycin for 48 h, uninduced and RA-induced ALP activity declined while incubation with a protease inhibitor restored activity, indicating that the L/B/K ALP bear N-linked oligosaccharide chains important for maintaining enzymatic activity. Interestingly, ALP activity in RA-treated cultures was less inhibited by tunicamycin compared to untreated controls suggesting that RA may have an impact on ALP N-glycosylation. To investigate effects of RA on ALP glycosylation further, incorporation of [(14)C]mannose and [(35)S]methionine into ALP protein was determined in the presence or absence of RA. The ratio of mannosylation and biosynthesis demonstrate that incubation of cells with RA increased [(14)C]mannose incorporation into ALP molecules. Also, the release of free [(14)C]mannose from ALP molecules relative to the amount of protein by N-Glycanase was increased in RA-treated cultures. In addition, mannosylation of total protein was found to be induced in cells after exposure to RA. Analysis of biosynthesized ALP monomers revealed that RA increased glycosylation of the polypeptides. Furthermore, tunicamycin decreased the stability of ALP mRNA, an effect that was reduced by cotreatment with RA. Thus, the degree of N-glycosylation of the L/B/K ALP as well as mRNA and protein levels of this enzyme are affected by RA. The P19 cell line provides a useful model system to study the molecular mechanism(s) underlying the action of RA on glycosylation during neuronal differentiation further.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call