Abstract

Axial force-controlled fatigue tests are conducted at various stress ratios (R) on Ti-6Al-4V specimens prepared by two different manufacturing techniques (hard turning plus polishing with and without vacuum stress relieve anneal carried out after polishing). Residual stress is measured by using X-ray diffraction. Results indicate that the surface compressive residual stress lead to an increase of fatigue limit at a given life and stress ratio. This effect decreases with increasing stress ratio R. At R = 0.6, the effect of surface residual stress on fatigue limit fades away. In addition, the location of crack initiation shifts from surface to interior when the stress ratio changes from −1 to 0.6.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.