Abstract

Hydrogen assisted cracking on hemispherically-stretch-formed specimens of transformation induced plasticity-aided martensitic steel was investigated. Hydrogen charging induced cracking around the foot of the impression formed on the steel sheet, and the cracks propagated along the radial direction toward the hillside and the plains. Distributions of stress, plastic strain and volume fraction of retained austenite were analyzed employing the energy-dispersive X-ray diffraction method utilizing the synchrotron X-ray radiation at SPring-8. It was notable that the crack initiation took place in the region where the measured tensile stress was the highest. Influences of plastic strain and resulted martensitic transformation were also suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.