Abstract

AbstractPolyelectrolyte hydrogels, physically crosslinked by metal ions, were synthesized using poly(sodium acrylate) as the main constituent and Al ions as the crosslinker. The swelling ratio of the gel was measured whenever the solvent water was repeatedly exchanged in a constant interval. The as‐synthesized gel exhibited two relaxation processes; the gel swelled at the first stage, then shrunk very slowly at the second stage, and recovered to the initial size just after the gelation (ultimately, the gel became smaller than that). The relaxation times of both processes were found longer (exceptionally longer for the shrinking process) than the conventional collective diffusion of polymer networks. The diffused amounts of Al ions and Na counter ions in the solvent were also measured at each water exchange. The diffusion of Al ions into the solvent was found to finish when the swelling ratio took the maximum (at the end of the first stage), while Na ions continued to diffuse until the diameter became the final one (at the end of the second stage). The microscopic structural changes by the repeated water exchange were obtained by the measurements of ATR FT‐IR spectroscopy on the gels with different swelling ratios. The carboxyl groups were gradually protonated on both stages, and the formation of hydrogen bonding was accelerated on the second stage. Effects of the repeated water exchange on the swelling behavior are discussed in terms of the diffusion of Al ions into the solvent, the exchange of Na counter ions by protons, and the formation of hydrogen bonding. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 753–763, 2005

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call